MARINALGAE4aqua (COFASP - 2'nd call)

2016

Simultaneous increase of population and living standards will create a high demand for fish-derived protein in the future.

However, resource scarcity (feed, water and energy), environmental impacts, and changes in climate and growing conditions have to be seriously considered in aquaculture. New sustainable protein and lipid sources and improved technologies to increase bio-availability of existing sources will be needed to ensure adequate supply of aquafeeds. Although aquaculture effluents can be an excellent medium for algal growth, they are usually not reused since they contain residual organic compounds, minerals and other micro-pollutants. MARINALGAE4aqua is an innovative research project that targets to develop strategies for increasing efficiency of important European farmed fish and reducing their environmental impact using micro- & macro-algal biomass as feed ingredients by: I. Culturing marine algae under optimized technological processes to remove organic compounds and minerals from fish farm effluents so as to produce high value products for aquafeeds while recycling nutrients; thus improving the water body quality and reducing the environmental impact. II. Identifying novel feed additives to improve fish digestive capacity and nutrient metabolism upon using the selected algae. III. Improving fish growth and end product quality, reducing time to slaughter and providing consumers with a safe and healthy food item that has wider acceptance. MARINALGAE4aqua aims to tackle the sustainability challenges of the aquafeed industry by developing cost-effective and resource-efficient alternatives to fishmeal by providing: a) efficient new processes to valorize selected marine algae that could reduce EU imports of protein and lipid sources and minimize over-exploitation of wild fish stocks, loss of biodiversity and environmental burden and b) high sensory quality and consumer acceptance of fish products to meet food security and dietary needs for a healthy life.

Udfører/hovedansøger Danmarks Tekniske Universitet
Øvrige samarbejdspartnere Danmarks Tekniske Universitet
Projektets samlede budget DKK 2.183.045,00
Bevillingsstørrelse tildelt DKK 1.952.645,00